Amelia Lindsay (AE), Alacyn Cox (AE)

machine with ease.

adjustable tie-rod will be implemented.

Sponsor: Mark Freudenberg, John Deere Randall Bill, John Deere

Technical Advisor: Prof. Harlow

Acknowledgements: Jacob Mazanec, John Deere **Design Review Judges**

Instructors: Dr. Stwalley

	_
of material:	\$1,160
stom machining:	\$17
of forging:	\$53
cost per part:	\$1,230
O rearte rereduced in total	

Calculations & Analysis

- following results:

Final Solution

- 960 steel

 \succ Provides F.S. = 1.2, given analysis results

- - > Meets all design criteria
 - Cost effective

> Through a mid-design review, 2 alternative solutions were chosen to move forward with analysis Design #2: Overlapping Joints Design #4: Hydraulic Cylinders > Hand calculations were performed on both models to get the Buckling loads Deflection Bolt Shear Stress > Creo FEA was also performed on both models and the results were comparable to the hand calculations Through analysis, several iterations were made to both Design #2 and #4 Stress von Mises (WCS) (MPa) 981.372 800.000 700.000 600.000 500.000 400.000 Stress von Mises analysis of Design #2 at mid-extension length

 \succ The team's final recommended solution to the given problem statement is Design #2: Overlapping Joints

The material selected for the final solution is Armstrong Ultra

 \succ Why this solution was the best: > Stresses shown in analysis were allowable > Minimum parts required

